U.S. DEPARTMENT OF COMMERCE
 NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL WEATHER SERVICE NATIONAL METEOROLOGICAL CENTER

and

Dean Dubofsky
Automation Division

The NMC Operational Global Energy Program

I. Introduction

Throughout the years, a need has been recognized by many groups within NOAA for numerical information on the "state" of the atmospheric general circulation as delineated by the synoptic analyses and/or numerical forecasts. For example, such data can be utilized in evaluating forecast techniques, determining the effects of various data inputs to the analyses and monitoring for perturbations against the norm. U1timately, it was decided that one measure that could fulfill the above requirements was the estimate of various terms in the energy budget of the atmosphere along with certain basic parameters of the circulation that enter into the calculations. With the implementation of the global analysis scheme at NMC in late 1974, it was decided to include these calculations within each computational cyc1e, both $0000 z$ and $1200 z$.

It is worth noting that the availability of the global analyses offered two significant advantages over previous analyses: the first is that as the analyses have a direct output of temperature and wind, no assumptions of geostrophy have to be included and the second is that the global analyses allow the computations to be extended not only into the Tropics, but also the Southern Hemisphere where information of this type has been very sparse.

At the same time, as the results from the computations are considered to be operational products, it was decided to archive them on the 36 -day rotating disc file. In this manner, any group with disc access could obtain the desired information directly. For continuing archival, the daily data are retrieved at the end of each month, the monthly averages and standard deviations are computed and the complete file is retained on magnetic tape.

The purpose of this note is to describe the terms in the energy balance that are computed, the techniques of calculation, the output formats, and finally the procedures of disc access.

II. Energy Equations

A. At this point, it is convenient to use symbolic notation to denote the four equations pertinent to the energy budget as considered here:
(1) $\frac{\partial A Z}{\partial t}=B A Z \phi_{S}+B A Z P_{1}+B A Z P_{2}-C(A Z, A E)-C(A Z, K Z)+G Z$
(2) $\frac{\partial A E}{\partial t}=B A E \phi_{S}+B A E P_{1}+B A E P_{2}+C(A Z, A E)-C(A E, K E)+G E$
(3) $\quad \frac{\partial K Z}{\partial t}=B K Z_{S}+B K Z P_{1}+B K Z P_{2}+C(K E, K Z)+B \phi Z_{S}$

$$
+B \phi Z P_{1}+B \phi Z P_{2}+C(A Z, K Z)-D Z
$$

(4) $\frac{\partial K E}{\partial t}=\mathrm{BKE}_{\mathrm{S}}+\mathrm{BKEP}_{1}+\mathrm{BKEP}_{2}-\mathrm{C}(\mathrm{KE}, \mathrm{KZ})+\mathrm{B} \phi \mathrm{E}_{\mathrm{S}}$

$$
+\mathrm{B} \phi \mathrm{EP}_{1}+\mathrm{B} \phi \mathrm{EP}_{2}+\mathrm{C}(\mathrm{AE}, \mathrm{KE})-\mathrm{DE}
$$

where $A Z$ and $A E$ are the zonal and eddy available potential energy and $K Z$ and KE are the zonal kinetic and eddy kinetic energy respectively. The terms beginning with the letter B represent boundary terms, those that begin with C are energy conversions between the parameters within the parentheses, G terms represent energy generation and D frictional dissipation. Thus BAZ ϕ_{S} represents the meridional flux of zonal available potential energy through the latitudinal boundary; BAZP_{1} is the flux of zonal available potential
energy through the pressure surface $P_{1} ; C(A Z, A E)$ is the conversion of energy between zonal available and eddy available potential energy, and $G Z$ is the generation of zonal available potential energy by diabatic processes. The terms involving $B \phi E P$ and $B \phi Z P$ are boundary terms also, but are of a different nature than the others. These terms represent a form of pressure-work at the boundaries and have been shown to be significantly greater than the BKEP and BKZP terms.

While the above represents a virtually complete set of equations required for balance, in practice we are not able, at this time, to estimate several of the terms. For example, the generation and frictional dissipation terms require information that is simply not available. In addition, vertical motions are presently not analyzed and, consequently, all terms that require knowledge of this term are omitted as well. It is hoped that these terms can be included in the future. Finally, certain terms have been shown in previous investigations to be much smaller than the others and have not been considered here.

After all the above simplifications are included, the resultant terms of the energy equations that we consider are: $A Z, A E, K Z, K E, C(A Z, A E), C(K E, K Z)$, and $B \phi E P$. The manner of inclusion of the B $\phi E P$ term without calculation of the vertical motion will be discussed below.
B. Definition of Symbols

Throughout this note, all symbols will retain their usual meteorological convention and we will concentrate here on the definition of the operators employed.

$$
-4-
$$

$[\mathrm{S}]=$ average around a latitude or zonal average $=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{Sd} \lambda$
$S *=S-[S]=$ departure of S at any point from the zonal average
$\overline{\mathrm{S}}=$ areal average $=\frac{1}{\left(1-\sin \phi_{\mathrm{S}}\right)} \int_{\phi_{\mathrm{S}}}^{\pi / 2}[\mathrm{~S}] \cos \phi \mathrm{d} \phi$
$S^{\prime}=[S]-\bar{S}=$ departure of the zonal average from the areal average.
C. Parameter Definitions

$$
\begin{aligned}
& A Z=\frac{R}{2} \frac{1}{P_{0}{ }^{K}} \frac{P^{K-1} \overline{\theta^{-1}}}{-\frac{\partial \bar{\theta}}{\partial P}} \\
& A E=\frac{R}{2} \frac{1}{P_{0}{ }^{K}} \frac{P^{K-1} \overline{\left[\theta^{2}{ }^{2}\right]}}{-\frac{\partial \bar{\theta}}{\partial P}} \\
& K Z=\frac{1}{2} \quad\left(\overline{[u]^{2}}+\overline{[\mathrm{v}]^{2}}\right) \\
& K E=\frac{1}{2} \frac{\vdots}{\left[u^{2}+v^{*}{ }^{2}\right]}
\end{aligned}
$$

$$
C(A Z, A E)=-\frac{R}{a P_{0}{ }^{K}} \frac{P^{K-1} \overline{\left[\mathrm{v}^{*} \theta *\right] \frac{\partial \theta^{\prime}}{\partial \phi}}}{-\frac{\partial \overline{\partial \theta}}{\partial P}}
$$

$$
C(K E, K Z)=\frac{1}{a} \cdot\left(\overline{\cos \phi[u * v *] \frac{\partial}{\partial \phi}([u] / \cos \phi)}+\overline{\left[v *^{2}\right] \frac{\partial[v]}{\partial \phi}}-\overline{\tan \phi[v]\left[u * *^{2}\right]}\right)
$$

The term $B \phi E P$ is determined at $10 \mathrm{KPA}(100 \mathrm{mb}$) only and is calculated utilizing the approximation of Miller and Johnson* such that:

$$
\frac{\mathrm{B} \phi \mathrm{EP}}{10 \mathrm{KPA}}=\left\lfloor\mathrm{uc} \cdot \frac{\mathrm{E}}{\mathrm{~g}} \frac{[\mathrm{v} * \theta *]}{\frac{\partial \bar{\theta}}{\partial \mathrm{P}}}\right.
$$

where a negative value of $B \phi E P$ represents a transfer of energy from the troposphere to the stratosphere.
III. Computational Techniques
A. Input of Parameters

The winds and temperature (u, v, T) for the energy calculations are normally taken from the final analysis file in strip form (\&\&SPASMOUT). This data is at 2.5° latitude-1ongitude intervals, at the mandatory pressure levels. For further description of the data format, see "For the Record", P. Chase, January 2, 1974. (Addendum I.)

In order to be able to calculate the energies from data in other formats, codes are available from the authors of this note to convert some formats to the required format. They are:

1) 65×65 polar stereographic data at mandatory levels to latitude longitude data at mandatory levels.
2) latitude-longitude data at mandatory levels to strip form (by latitude at mandatory levels).
B. Method of Calculation

Section II gave the definitions and equations appropriate to energy calculations. This section describes the approximate forms actually used by
*Mi1ler, A. J. and K. W. Johnson, 1970: On the interaction between the stratosphere and troposphere during the warming of December 1967January 1968. Q.J.R.M.S., 95, 24-31.
the energy code. The forms are:

$$
\text { zonal average: } \quad[S] \simeq \frac{1}{N} \sum_{i=1}^{N} S_{i}
$$

where S_{i} is a variable defined at a particular pressure level and given at N evenly spaced points along a latitude circle. As before

$$
S^{*} \equiv S-[S] .
$$

The area average is approximated by

$$
\left.\bar{S} \simeq \frac{1}{\sin \phi_{n}-\sin \phi_{S}} \sum_{j=1}^{M} \frac{1}{2}\left({ }_{f} S\right]_{j}+[S]_{j+1}\right)\left(\cos \frac{1}{2}\left(\phi_{j}+\phi_{j}+1\right)\right)\left(\phi_{j+1}-\phi_{j}\right)
$$

where $M+1$ is the number of evenly spaced points in latitude between the latitudes ϕ_{S} and ϕ_{n}. We define

$$
S^{\prime \prime} \equiv[S]-\bar{S}
$$

S" represents the negative of the difference of the zonal average from the areal average. Naturally, since the areal average depends upon the area used, so does S". Where possible, hemispheric averages are used for \bar{s}.

Finally, vertical integrals are approached as follows:

$$
\int_{p_{1}}^{p_{2}} \bar{s} \frac{d p}{g} \simeq \sum_{k=k_{1}}^{k_{2}-1} \frac{1}{2}\left(\bar{S}_{k}+\bar{S}_{k+1}\right) \frac{p_{k+1}-p_{k}}{g}
$$

where k is a vertical index and $p\left(k_{1}\right)=p_{1}$ and $p\left(k_{2}\right)=p_{2}$.
Derivatives are approximated by centered differences, i.e.,

$$
\frac{\partial S}{\partial y} \simeq \frac{S_{j+1}-S_{j-1}}{2 \Delta \phi}
$$

and

$$
\frac{\partial \bar{\theta}}{\partial p} \simeq \frac{\bar{\theta}_{k+1}-\bar{\theta}_{k}}{p_{k+1}-p_{k}}
$$

IV. Output

As an operational product, there are two forms of output of the energy calculations at each time. The first is a complete file at all standard levels from 100 to 5 KPA (1000 to 50 mb) maintained on a 36 -day rotating disc file. The next section will discuss the access to the disc file and how to retrieve any desired information from it. At the end of each month, the daily data are collected, monthly means and standard deviations are calculated and the entire data set is archived on magnetic tape. In addition, hard copy of the energy output at $85,50,10,5 \mathrm{KPA}$ and total integral data are received by the Upper Air Branch, Development Division on a daily basis for monitoring purposes. A sample of the hard copy is shown in Figure 1 for 50 and 10 KPA and the total integral.

Looking first at the output at the 50 and 10 KPA , we see that the terms $\mathrm{KZ}, \mathrm{KE}, \mathrm{C}(\mathrm{AZ}, \mathrm{AE})$, and $\mathrm{C}(\mathrm{KE}, \mathrm{KZ})$ are printed at 5° latitude intervals from $80^{\circ} \mathrm{N}$ to $80^{\circ} \mathrm{S}$ along with latitudinal integrals of these terms from 20 N to pole, 20 N to 20 S , and 20 S to pole. In addition, the basic input parameters of the horizontal momentum flux $\left[\left(u^{*} v^{*}\right)\right]$, horizontal sensible heat $f 1 u x\left[\left(\mathrm{~V}^{*} \mathrm{~T}^{*}\right)\right]$, mean zonal wind ([u]) and mean zonal temperature ([T]) are also presented from 80N to 80S. The last column labeled WSZS is what we have termed $B \phi E P$ in Section II and is calculated only at 10 KPA . The results, as in the previous energy terms, are presented from 80 N to 80 S with integrated values over the three areas.

The total integral output is restricted to include only the six items of the energy equations described above and is presented for seven integrals: $100-10 \mathrm{KPA}$ and $10-5 \mathrm{KPA}(1000-100 \mathrm{mb}$ and $100-5 \mathrm{mb})$ for the

-8-

Northern Hemisphere, Southern Hemisphere, and the globe. The last integral encompassing 20 N to pole and $85-20 \mathrm{KPA}$ was included to offer an extension to the multi-year series of calculations carried out by the NESS. A comparison of these calculations versus the previous ones computed from a different synoptic analysis set will be the subject of a future article.

50. KPA PRFSSURE LEVFL OUTPUT 50. KPA PRFSSURE LEVFL OUTPUT (SI UNITS) G(AZAE $)$
$j / K G M / S \quad(K E, K Z)$
$J / K G M S$ 55.83E-05 $\quad 90.43 \mathrm{E}=07$
12.57E=04
$-14.84 E=00$
77.36E-05
$-70.685-06$
$-48.70 E-06$
13.5EE-05
22.74E-05
03.97E-06
18.915.006
$14.63 E .05$
23.60E-05
$32.72 E=06$
21.66E-06
$-80.72 E-07$
$=85,60 \mathrm{~F}-07$
UNITS)
(U*V*)
$M * 21 S * * 2$
2.23

1975
(4)
$m / 5$
2.49
(i)
240.4

2.23
-11.66
-12.60
-12.60
-19.21
-33.54
-30.12
-12.73
14.88
25.12
25.12
24.61
11.20
3.34

3.34
3.67
.16

-1.16
-1.87
0.63
0.63
0.66
0.90
0.49
-4.96
-12.90

-12.90	0.07	7.75
-15.44	-0.98	13.09

-15.95
-4.99
16.35
15.16
-0.84
7.93
25.66
22.56
11.37
-4.07
-4.07
$\begin{array}{ll}36.97 E-05 & 62.61 F-06 \\ 19.70 E-07 & 11.45 F-06\end{array}$
14.09E-05 28.30E-70

$\text { G.M.T } \begin{gathered} (\dot{T} *)^{12} \\ M / S / K \end{gathered}$	$\begin{aligned} & 1975 \\ & 64)^{19} \\ & 4 \end{aligned}$	(i)	
9.67	2.49	240.4	0.0
22.28	5.01	243.2	0.0
21.24	3.96	245.5	0.0
11.65	1.86	246.7	0.0
6.50	2.67	247.5	0.0
4.94	6.91	249.1	0.0
8.26	11.87	251.1	0.0
8.56	14.23	253.5	0.0
11.34	13.06	256.4	0.0
7.07	10.37	259.7	0.0
1.22	8.58	262.4	0.0
0.23	7.62	264.4	0.0
0.94	5.46	266.1	0.0
0.14	1.71	267.3	0.0
-0.18	-1.61	267.9	0.0
0.14	-3,43	268.0	0.0
0.14	-4.15	268.1	0.0
0.03	-3.52	265.0	0.0
-0.06	-1.22	267.8	0.0
-0.18	2.56	267.2	0.0
0.07	7.75	265.6	0.0
-0.98	13.09	262.7	0.0
-2.50	16.34	259.1	0.0
-3. 20	16.87	256.2	0.0
-3.72	15.75	253.7	0.0
-9.13	14.79	251.2	0.0
-8.11	14.94	249.0	0.0
1.71	13,17	247.9	0.0
2.94	6.75	247.0	0.0
-3.43	1.04	246.2	0.0
1.12	2.16	243.8	0.0
5.01	5.41	239.5	0.0
-0.74	3.67	236.1	0.0
			0.0
			0.0
			0.0

LATIT	UDE		$J / K G_{M}$	$\underset{J / K G M}{K G}$
80,0	N		45.71E-03	209.63E-01
75.0	N		10.05E-03	$214.92 \mathrm{E}-01$
70.0	N		91, 85E=04	24?.06E-01
65.0	N		99.39E-05	262.23E-01
60.0	N		$64.09 E-03$	258.49E-01
55.0	N		$59.08 \mathrm{E}-02$	244.14E-01.
50.0	N		15.65E-01	259.65E-01
45.0	N		96,20E-01	445.26E-01
40.0	N		15.74E+00	586.76E-01
35.0	N		95.82E=01	629.63E.01
30.0	N		53.49E=01	781.56E-0.
25.0	N		00.77E-01	557.14E-01
20.0	N		03,63E=01	310.16E=0!
15.0	N		29,80E-02	606.85E-01
10.0	N		61.88E=02	729.14E-01
5.0	N		31,80E-01	256.51E.01
0.0	N		75.85E-01	216.54E-01
5.0	S		80.39E-01	303.612-01
10.0	S		$31.83 E=03$	492.74E-01
15.0	S		10.07E=01	272.99E-01
20.0	8		19.80E-01	367.71E=01
25.0	8		67.19E+00	511.54E-01
30.0	S		06.45E+00	685.47E-01
35.0	S		56.81E+00	739.79E-01
40.0	S		37.31E=01	797.76E=01
45.0	s		97.69E-01	112.94E+00
50.0	S		53.83E+00	$125.18 E+00$
55.0	S		63.15E+00	$983.13 \mathrm{E}=01$
60.0	\$		02.45E-01	572.00 Em 01
65.0	S		16.59E-01	643.98E-01
70.0	S		30.2:E-02	83a,75E=01
75.0	S		366,70E-01	101.62E+00
80.0	5		23.60E=01	$116.66 E+00$
INTEGRALS				
20 N TO POLE			502.58E-01	444.09E=01
20 N	TO	20 S	S 178.54E-01	$400.76 \mathrm{E}-01$
20.8	T0	POLE	123.83E+00	798.34E-01

O G.M.T. 12 MAY

(1)	
228.3	0.0014
226.5	0.0100
225.1	-0.0035
223.7	0.0005
222.3	-0.0090
220.8	-0.0233
219.0	-0.0327
216.0	-0.0221
214.0	-0.1049
209.9	-0.1272
204.8	-0.0845
200.1	-0.0157
197.2	-0.0006
195.4	-0.0005
194,3	0.0004
193.8	-0.0001
193.7	0.0
193.8	0.0006
194.4	0.0000
195.2	0.0047
197.1	0.0093
201.4	-0.0387
207.3	-0.1141
212.6	-0.0749
216.2	-0.0736
216.6	0.0316
220.0	-0.1207
219.7	-0.3299
219.3	-0,2126
221.0	-0.0292
223.9	0.0068
227.4	0.3738
232.0	0.6869
	-0.0431
	0.0013

$*$

:		total integral output							
		NOFTHERN	HEMISPHERE	SUUTHERN	HEMISPHERE	GLDB4L		20	N 10 POLE
\cdots		100-10 KPA	$10-5 \mathrm{KPA}$	100-10KPA	10.5 KPA	100-10KFA	10.5 KPA		85-20KPA
		309.17E+04	108.76E+03	385,11E+04	$993.87 E+02$	345.70E+04	104.17E+03		186.75E+04
	EDDY AVAILABLE $A E$ J/M**2	502.40E+03	$832.75 E+01$	$490.89 E+03$	$944.88 E+01$	495.55E+03	$888.12 E+01$		477.75E+03
	KZNAL KINETIC	366.12E+03	$165.47 E+02$	723.83E+03	$341.03 E+02$	544.98E*03	253.25E+02		374.33E+03
	EDOY KINETIC KE JAM**	$6\{3.08 E+0\}$	$160.725+02$	$492.89 E+03$	$325.38 E+02$	552.99E+03	243.05E+02		656.67E+03
	CONVERSION OF AVAILABLE ($(A Z, \Delta E)$ J/M**2/S	157.73E-02	-222.20E-04	674.26E-03	-230.90E-04	113.72E-02	-226.49E-04		204.65E.02
$\begin{aligned} & \stackrel{9}{4} \\ & \underset{H}{4} \end{aligned}$	CONYERSION OF KINETIC C(KE,KZ) J/M**Z/S	389:75E03	-693.94E-06	479.82E-03	486.54E-04	434.77E=03	239.80E=04		501.08E=03
\bigcirc		OG.M.I. 12 MAY 1975							

V. Disc Access

Access to the 36-day historical ENERGY files (HD36) is accomplished by the normal subroutines written to access the direct access binary data sets (i.e. the W3FK package). Information on labels of NMC data fields and the 36-day historical files are presented in Office Notes 84 and 108, respectively.

A listing to access (main) and print (subroutine ERGPRT) a complete file (all levels) for one time period of 1 day is presented below, in this case for June 1, 1975, 1200 GMT. We assume that the reader is familiar with the use of the W3FK routines and will concentrate here on the identification of the parameters in the subroutine ERGPRT as depicted on the set of dimension statements versus those defined in the text above. ZK and EK correspond to the zonal and eddy kinetic energy, $C A$ and $C K$ are equivalent to what we have defined as $C(A Z, K Z)$ and $C(K E, K Z)$ respectively. USVS and USTS refer to the horizontal momentum and sensible heat flux, [$\left.u^{*} \mathrm{v}^{*}\right]$ and $\left[\mathrm{v}^{*} \mathrm{~T}^{*}\right]$], $Z \mathrm{U}$ and ZT are the mean zonal wind and temperature, [u] and [T], and WSZS represents the B ϕ EP term. All these fields are dimensioned (74, 12). The first index refers to the latitude: 1 is equator; 37 is north pole; 38 repeats equator; and 74 is south pole. The second index refers to the pressure level. The levels correspond to the mandatory levels, beginning with 100 KPA . The location of these fields within the two arrays TOTAL1 and TOTAL2 may be seen by examining the SUBROUTINE ERGPRT.

ZKT, EKT, CAT, CKT and WSZST represent the integrals of $\nexists \mathrm{K}, \mathrm{EK}, \mathrm{CA}, \mathrm{CK}$ and WSZS over the three latitude regions, 20 N to pole, 20 N to 20 S , and 20 S
to pole. These fields have the dimension (3, 12). The first index is for the region: 1 for 20 N to pole, 2 for 20 N to 20 S , and 3 for 20 S to pole. The second index is again for the pressure levels. The final hemispheric integrals are represented by TAZ, TAE, TZK, TCA, and TCK respectively. These are dimensioned (7). They are for the regions shown on the Total Integral Output:

1: Northern Hemisphere, $100-10$ KPA
2: Northern hemisphere, $10-5 \mathrm{KPA}$
3: Southern hemisphere, 100-10 KPA
4: Southern hemisphere, 10-5 KPA
5: G1oba1, 100-10 KPA
6: G1oba1, 10-5 KPA
7: 20N to north pole, 85-20 KPA.

```
```

$\%$ WWDDAJM. JOB (WO43008AC201000, WHR-AB), 'DUBOFSKY',

```
```

$\%$ WWDDAJM. JOB (WO43008AC201000, WHR-AB), 'DUBOFSKY',
//** MAKE SURE YHAT YOU USE THIS COPY PROC AND DD NOT ACCESS THE

```
```

//** MAKE SURE YHAT YOU USE THIS COPY PROC AND DD NOT ACCESS THE

```
```



```
```

\%/ EXEC NWSCOPYD, D=1 NWS.NMC. PROD.HO36.ENERGY1",T=I EEENRGYL'•

```
```

\%/ EXEC NWSCOPYD, D=1 NWS.NMC. PROD.HO36.ENERGY1",T=I EEENRGYL'•
/ $/ *$ NREC=288, CYL YOU $10, P=1$
/ $/ *$ NREC=288, CYL YOU $10, P=1$
\% $/ \%$ IF YOU USED THE ENERGY DATA SETS DIRECTLY AND
\% $/ \%$ IF YOU USED THE ENERGY DATA SETS DIRECTLY AND
$\%$ IF YOU GOOF YOU COULD WIPE DUT THE ENERGY COOE FOR A MONTH
$\%$ IF YOU GOOF YOU COULD WIPE DUT THE ENERGY COOE FOR A MONTH
///FORTECYSNORXCLG
///FORTECYSNORXCLG
//FORT SYSIN DO NO N
//FORT SYSIN DO NO N
DTMENSION TOTAL $1(3786)$, TOTAL $2(4452)$
DTMENSION TOTAL $1(3786)$, TOTAL $2(4452)$
DIMENSIONIDENT(5) $0,0,0,0 \%$
DIMENSIONIDENT(5) $0,0,0,0 \%$
DIMENS ION FLD(4452)
REAL $\$$ ENRGYI ENRGY2

```
```

 DIMENS ION FLD(4452)
 REAL $\$$ ENRGYI ENRGY2

```
```



```
```

C SET DPMENSION LHE DATE

```
```

C SET DPMENSION LHE DATE
MR $=75$
MR $=75$
MONTH $=06$
MONTH $=06$
$\operatorname{DOAY}=012$
$\operatorname{DOAY}=012$
C OPEN THE HOFSI ENRGY FILESR,MONTH,IDAY,ICYCLE 0 .
C OPEN THE HOFSI ENRGY FILESR,MONTH,IDAY,ICYCLE 0 .
CAL W3FKOO (ENRGY2, LOC2,288)
CAL W3FKOO (ENRGY2, LOC2,288)
CALL W3FKOO (ENRGY
CALL W3FKOO (ENRGY
CALL W3FKOI(ENRGY :IDL,2888)
CALL W3FKOI(ENRGY :IDL,2888)
C CREATE CHE FIFTH WRGD OF THE
C CREATE CHE FIFTH WRGD OF THE
C READ OFL WHES14 THEATE, 254 ,IDENT(5)I
C READ OFL WHES14 THEATE, 254 ,IDENT(5)I
CALL W3FKO3 (ENRGY2,IC2,IDENT, FLD,288,4452,IERR)
CALL W3FKO3 (ENRGY2,IC2,IDENT, FLD,288,4452,IERR)
C COPY THE DATA TO A DIFFERENT ARRAY

```
```

C COPY THE DATA TO A DIFFERENT ARRAY

```
```



```
```

 DOTAL \(=13,4452\)
 TOTAL2
CONTI

```
```

 DOTAL \(=13,4452\)
 TOTAL2
CONTI
C^{2} CREATE THE FIFTH WORD OF THE ID
C^{2} CREATE THE FIFTH WORD OF THE ID
C READ CALL W3FS14(1DATE,255, IDENT(5))
C READ CALL W3FS14(1DATE,255, IDENT(5))
CALL W3FKOUSENRGYI,IDL,IDENT, FLD,288.3786,IERRI
CALL W3FKOUSENRGYI,IDL,IDENT, FLD,288.3786,IERRI
PRINT 1 ROPR
PRINT 1 ROPR
C^{2} COPY FORMATIT IERR IS DATA TO A DIFFREN
C^{2} COPY FORMATIT IERR IS DATA TO A DIFFREN
COPY THE DATA TOR A DIFFERENT ARRAY
COPY THE DATA TOR A DIFFERENT ARRAY
OO $\mathrm{O}^{3} \mathrm{I}=13.3786$
OO $\mathrm{O}^{3} \mathrm{I}=13.3786$
3. TOTALI(I) = FLO(I)

```
```

 3. TOTALI(I) = FLO(I)
    ```
```



```
,
```

```
,
```

A AUG', 'SEPT: ${ }^{\prime}$ OCT', NOV', DEC'

LOIMENSICN IP (12)
OATA IP/100,85,70,50,40,30,25,20,15,10 ,7,51
$0050 \quad K=1.12$
$X=1 P(K)$
${ }_{P R}=I P(K)$
55 PRINT 55 , IX, XMGNYH (MONTH), IDAY,NYR, ICYCLE

XIL=85.0
$0065 \quad j=1,33,2$
$J I=34-j$
$\mathrm{JL}=34-\mathrm{J}$
$\begin{array}{ll}\times 1 L \\ K \times 74\end{array}=X 145$.
$K \times 74$
PRINT
$90,74 *(K-1)+J 1$
TOTAL $2(K \times 74+2676)(K \times 74+12)$, TOTAL $2(K \times 74+900)$, TOTAL $2(K \times 74+1788)$
2 TOTALI (KX74+12), TÓTALI(KX74+900), TOTALI(KX74+1788), TOTALI(KX74
90 FORMAT $2 X, F 4,1, N$ N, $4 X, 3$ PE11-2, $4 X, 3$ PE12-2, $4 X, 2 P E 11.2,4 X, 2 P E 11-20$
14X,OPF12.2,F13.2,F11.2,F9.1,F11.4/)
os CONTINUE
00 95, $j=40,70,2$
$\times I L=X I L+5$.
$\mathrm{J}=\mathrm{J}$
$\mathrm{K} \times 74$
$K \times 74$
PRINT $9174 *(K-1)+J 1$
1 TGTAL2 $2, X 1 L$ TOTAL $2(K \times 74+12)$, TOTAL2 (KX74+900) TOTAL2 (KX74+1788) :
$\frac{1}{2}$ TOTALI (KX74+12), TOTALI(KX74+900). TOTALI(KX74+1788), TOTALL(KX74
91 FORMAT $2 \mathrm{X}, \mathrm{F} 4,1, \mathrm{~S}: 4 \mathrm{X}, 3 \mathrm{PE} 11,2,4 \mathrm{X}, 3$ PE12-2,4X,2PE11-2,4X,2PE11-2
$14 \mathrm{X}, \mathrm{OPF} 12,2, F i 3,2$, F1i,2,F9.1,Fi1.4/)
205 CONIINUE
101 PRINT 101 , INATEGRALS'/)
OC $105,1=1,3$

10PF10.4\%
105 CONTINUE
O CONTINUE
115 FQRMAT $11 H 1,60 X$, 'TOTAL INTEGRAL OUTPUT'///34X, NORTHERN HEMISPHERE

PRINT 116 , (TOTAL $1(J), j=3745,3751$)
PRINT $117,(T O T A L 1(j), j=3752,3758)$
PRINT 117 ; (TOTALI (J), J $=3752 ; 3758$
PRINT 118 (TOTALI (J) $J=3759,3765$

PRINT 120, (TOTAL1 (J), J=3773, 3779)
PRINT 122, XMONTH(MCNTH), IDAY NYR ICYCLE
123 FOOMATIIXP,IF2.0, VAYS OF DATA WERE USEO'
116 FORMAT $4 \times$, ZONAL AVAILABLE', 13X,7(3PEL1.ZZ,3X)/
117 FORMAT (4X,'EDOY'AVAILABLE', 14X, 7 (3PE11.2, 3 , 3 X)/
118 FORMAT (4X, ZONAL KINETIC. $15 \mathrm{X}, 713 P E 11.2$. 3 X)/
119 FQRMAT (4X, 'EDOY KINETIC. $16 \mathrm{X}, 7$ (3PE11.2,3X)/
120 FORMAT (4X, 'CONVERSION OF AVAILABLE• $5 \mathrm{XX}, 7(3 P E 11.2 .3 X)$

RETURN
/LKED-SYSLIB DD

/ DO OSN=NWS NMC. PRCD. LOAD.W3LIB, DISP=SHR

$/ / G O$ ENRGY DO DSN= $\mathcal{E} N R G Y I, D I S P=(O L D . P A S S)$ | //GO.ENRGYL |
| :--- |
| $/ / G O D$ |

